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Abstract  

This deliverable describes the integration of uncertainties with regard to climate impact modelling into 
the existing trajectory optimisation tools Robust optimization of structured airspace (ROOST) and 
Trajectory Optimisation Module (TOM). Specific adaptations of the trajectory optimisation models are 
required to consider uncertainties with respect to meteorology and climate impact and the robustness 
concept developed in FlyATM4E. Flight trajectories from the previously selected traffic scenario are 
optimised taking into account combinations of individual uncertainties. Furthermore, the spread of 
the mitigation efficiency of these optimised eco-efficient trajectories is estimated. Finally a robustness 
assessment is performed based on the results achieved optimising an example set of routes and in a 
consolidated manner for the entire traffic scenario.  

The achievements documented in this deliverable contribute to the overall project objective O2 on the 
investigation of aviation’s climate impact mitigation potential by developing robust flight planning 
algorithms through the integration of uncertainties from the climate impact analysis and ensemble 
weather forecasts in ATM.  
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1 Introduction 

This report presents and describes the final results obtained within the Work Package 2 (WP2) of the 
FlyATM4E project towards the optimisation of eco-efficient aircraft trajectories. 

The report includes an overview of the background and purpose of this research (Section 1) and a 
general description of the simulation setup including general assumptions, as well as a summary of the 
MET-data and the considered traffic scenario (Section 2). The results from the optimisations are 
presented for each optimisation tool and approach individually in Sections 3.1 and 3.2.. A summary of 
results followed by the conclusions drawn from these results conclude the report. 

 

1.1 Background 

Aviation emissions play a substantial role in the anthropogenic climate change [7]. With an estimated 
contribution of approximately 3.5% [9], and a historically estimated growth rate of equally 5%1, the 
climate impact of aviation has become increasingly relevant. 

At the same time, global air transport is expected to grow at rates significantly higher than the annual 
increases in fuel efficiency. There is thus a risk that the relative contribution of aviation to 
anthropogenic emissions and the associated climate impact will increase, which is of particular 
importance due to the special effects of non-CO2 emissions at high altitudes (formation of contrail 
cirrus or ozone). These emissions consist mainly of carbon dioxide (CO2), nitrogen oxides (NOx), water 
vapour (H2O), soot and sulfate aerosols as well as contrails [5]. However, non-CO2 emissions impact 
accounts for nearly 2/3 of the total climate impact of aviation, and is highly reliant on atmospheric 
conditions at the time and location of emission [5].  

This geographical and temporal dependency has been previously analysed the in research, e. g. in the 
REACT4C project, in which the mitigation potential of climate-optimised flight routing as a measure to 
reduce aviation’s climate impact was investigated. Here, the feasibility of adopting flight routes and 
altitudes leading to a reduced impact of emissions was assessed, and the global effects of such 
measures were estimated for the North Atlantic flight corridor [3]. By using 4-D climate change 
functions to assess the climate impact, and combining them with traditional operating cost functions 
used by airlines, so-called Pareto-fronts could be calculated to determine not only climate-optimal but 
also cost-efficient flight routes. 

In the WeCare project conducted by the German Aero Space Centre (DLR) until 2017, the effects of 
non-CO2 emissions and their atmospheric dependencies were investigated. In a feasibility study 
performed within the ATM4E project, a modelling chain of climate-optimisation was developed and 
applied to the European Airspace, which introduced the concept of algorithmic climate change 
functions [20], publishing initial estimates on mitigation potentials on individual trajectories and 
influence of individual physical climate metrics [14]. Mainly, the cost-benefit potential of climate-

 

 

1 https://www.icao.int/sustainability/Documents/LTF_Charts-Results_2018edition.pdf 
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optimised flight trajectories, derived from tactical, weather-dependent optimisation as well as 
strategic, climatological optimisation of the flight altitude was addressed in order to determine which 
strategies are most suitable  [10]. 

This analysis, and especially the estimation of eco-efficient trajectories, requires  the availability of 
climate change functions that enable the quantification of the climate impact of emissions as a 
function of emission location and time. In the course of FlyATM4E, the algorithmic Climate Change 
Functions (aCCFs) derived and revised from the previous ATM4E project are used [17]. These aCCFs 
are applied to estimate the climate impact of aviation’s emissions, representing one part of the 
objective functions for the optimisation models. These functions rely on mathematical algorithms to 
derive the climate impact directly from meteorological forecast data which is available at the flight 
planning stage. 

In WP2 of FlyATM4E, two main contributions take place which will advance the knowledge beyond the 
state of the art. Firstly, the consideration of uncertainties resulting from (incomplete) representation 
of climate impact mechanisms and limited forecast quality by integration of forecast uncertainties into 
the trajectory optimisation process. Secondly, the identification of robust climate-optimised 
trajectories relying on operationally available MET data (in the form of EPS forecasts), considering 
uncertainties originating from predictability, future climate development and meteorological 
variability. 

1.2 Purpose 

The main goal of this deliverable is to provide an overview of the integration of uncertainties with 
regard to climate impact modelling into existing trajectory optimisation tools (i.e. Robust optimization 
of structured airspace (ROOST) and Trajectory Optimisation Module (TOM)). Two different 
optimisation approaches are applied to flight trajectories taking into account combinations of 
individual uncertainties. On the basis of these results, an estimation of the spread of the mitigation 
efficiency of eco-efficient trajectories can be made. Finally, the robustness of these eco-efficient 
trajectories is assessed. 
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2 Simulation setup 

Within this section, general assumptions made for both optimisation approaches are presented 
together with the implemented algorithmic climate change functions in Section 2.1. This includes the 
integration of uncertainties with regard to climate impact modelling and weather forecast.  

The optimisation tools and their individual constraints and conditions follow in Sections 2.2 and 2.3 
with an overview and  

2.1 General assumptions for all simulations 

Within WP2 two different optimisation approaches are implemented  to calculate eco-efficient aircraft 
trajectories. Since the methods implemented in each of them differ, their setup and some of the 
assumptions made for the optimisations are individual to them. This section presents the general 
overview of assumptions that apply to both methods. 

2.1.1 Implementation of algorithmic climate change functions 

Within the project ATM4E, so called algorithmic climate change functions (aCCFs) have been 
developed for both, CO2 and non-CO2 effects. With regard to the non CO2-effects, ozone and methane 
(and the resulting Primary Mode Ozone(PMO)) changes from the emission of NOx, water vapour 
emissions as well as persistent contrail formation have been considered. The underlying concept was 
to use detailed calculations of the climate impact (CCFs) and to derive surrogate models from those 
which only depend on standard meteorological forecast data which is available at the flight planning 
stage. Consequently, compared to the detailed CCFs, aCCFs allow for a fast-time estimation of the 
climate impact. Since the aCCFs are based on the CCFs, they inherit the uncertainties associated with 
the CCFs. Additionally, further uncertainties about the aCCFs arise from the derivation of the aCCFs 
[17].In the project FlyATM4E, we will rely on a recent updated mathematical formulation of the 
prototypic aCCFs which is currently under preparation in a scientific article from within the FlyATM4E 
consortium [19]. In order to assess the robustness of uncertainties originating from the calculation of 
the climate impact, alternative estimates of aCCFs will be analysed in an additional assessment of 
climate-optimised trajectories (post-processing) under assumptions using alternative values within the 
ranges of uncertainty or possible choices and options, as identified in WP1 and handed-over to WP2. 
With such an approach it will be possible to provide an uncertainty range of, e.g., the climate impact 
of climate-optimised trajectories, describing the robustness of climate impact mitigation on climate-
optimised trajectories. 

2.1.2 MET data 

The meteorological data necessary to compute the aCCFs is provided by the European Centre for 
Medium Weather Forecasts. The specific dataset used within FlyATM4E is the ERA5 dataset, which 
replaces ERA-Interim data used in previous research such as ATM4E. The ERA5 dataset contains hourly 
estimates (3-hourly for ensemble data assimilations) of a large number of atmospheric climate 
variables, with different vertical resolution models. Data can be requested via the Copernicus Data 
Store (CDS) or from the Meteorological Archival and Retrieval System (MARS), which is the Centre’s 
main data archive.  
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2.1.3 Traffic scenario  

The flight schedule of intra-ECAC flights was obtained from the Sabre Market Intelligence database for  
2018. A total of 16,329 routes were identified for the intra-ECAC traffic. Within FlyATM4E, eco-efficient 
trajectories are computed by optimisation tools, which –  depending on the optimisation approach –  
require large computational effort. This circumstance has been the motivation for finding a way of 
reducing the complexity of the optimisation problem. A direct approach is to reduce the number of 
routes to be optimised according to their relative importance for the overall optimisation result. 
Therefore, all flight routes obtained from the SABRE data base are ranked by their Available Seat 
Kilometers (ASK) for  2018. As described in D2.1, we will consider the top 100 routes in terms of ASK 
as a representative subset of data of traffic by total ASK volume and is an efficient first step towards a 
reduced flight route network. This subset of traffic is the basis for the optimisations performed by 
ROOST. The optimal control approach used in the TOM (see section 1.1.1) is very intensive in terms of 
computational effort. Hence, the route network’s complexity is required to be reduced substantially. 
Based on the intra-ECAC flight network, a clustering algorithm has been developed to reduce the 
complexity of the optimisation problem. 

The trajectory planning in FlyATM4E is not intended to be used as a ready-to-use operational solution, 
but is intended to better understand the relationship between a range of weather situations and 
associated mitigation potentials, as well as to provide a quantitative estimate on potential mitigation 
potentials in dedicated weather situations. Implementing these identified potentials will rely on e.g. 
meteorological classification, in order to identify the adequate mitigation strategy to be implemented 
in operational flight planning. Within FlyATM4E, many different possible solutions are explored in 
order to determine the potential of different mitigation strategies. However, in operational flight 
planning only a reduced number of options might be of importance according to the selected 
mitigation strategy (e. g. it is not required to determine 100 Pareto optimal solutions per trajectory). 

 
Figure 1: a) Route network of 16,329 origin-destination pairs present in the selected traffic scenario for ECAC-
area of 2018. b) Processed fictitious route network with reduced connections located in averaged locations in 
a 5°- grid weighted by traffic volume. 
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2.2 Stochastic flight plan optimization 

Robust optimization of structured airspace (ROOST) is a fast graph-based optimization algorithm 
capable of determining robust aircraft trajectories in the structured airspace considering 
meteorological uncertainty, characterized by EPS forecast [21] [23].  

The concept of robustness that we refer to is the determination of the aircraft trajectory considering 
all possible realizations of meteorological variables provided within the EPS weather forecast. In other 
words, instead of planning a trajectory based on one forecast in a deterministic manner, the aim is to 
determine a trajectory that is optimal considering the overall performance obtained from ensemble 
forecasts. In this respect, from the operational point of view, the optimized trajectory is tracked as 
determined, and the effects of meteorological uncertainties are reflected in the variables such as flight 
time, fuel burn, and climate impacts. As the optimization problem is constrained by the structure of 
airspace, it is associated with hybrid decision spaces. To account for discrete and continuous decision 
variables in an integrated manner, the optimization is performed on the space of probability 
distributions defined over flight plans instead of directly searching for the optimal profile. A heuristic 
algorithm based on the augmented random search is employed and implemented on graphics 
processing units to solve the proposed stochastic optimization computationally fast. 

2.2.1 Overview 

The aircraft trajectory optimization problem within the context of optimal control theory  requires the 
aircraft dynamical model, flight objectives, and physical and operational limitations [22]. The aircraft 
dynamical model and physical and operational limitations are necessary to determine operationally 
feasible trajectories within aircraft trajectory optimization, which will be briefly presented in Section 
1.1.1. The objective function (in the aircraft trajectory optimization problem) includes mathematically 
interpreted goals of path planning. A general formulation of the deterministic aircraft trajectory 
optimization problem in the context of optimal control theory has been stated in detail in our recently 
published survey [22] (see equation (5) of [22]). Generally, the aim is to find a control policy that 
minimizes a cost functional while simultaneously satisfying a set of dynamical, path, and boundary 
constraints. Here, since the aim is to plan robust climate-aware trajectories under meteorological 
uncertainty, a robust optimal control problem is to be formulated and solved.  In the context of optimal 
control theory, the following general form of the cost functional (or performance index) is considered 
for robust problems [23]: 

𝐽 = 𝔼{𝑀(𝑡0, 𝐱(𝑡0), 𝑡𝑓 , 𝐱(𝑡𝑓)) + ∫ 𝐿
𝑡𝑓

𝑡0

 (𝑡, 𝐱(𝑡), 𝐮(𝑡), 𝐳(𝑡), 𝜁)d𝑡} (1) 

where 𝑀:ℝ × ℝ𝑛𝑥 ×ℝ × ℝ𝑛𝑥 → ℝ  and 𝐿:ℝ × ℝ𝑛𝑥 × ℝ𝑛𝑢 × ℝ𝑛𝑧 , ℝ𝑛𝜁 → ℝ  are the Mayer and 
Lagrange terms called terminal cost and cost-to-go, respectively. 𝑛𝑥 , 𝑛𝑢  and 𝑛𝑧  represent the 
dimension of state vector 𝐱(⋅) , control vector 𝐮(⋅)  and vector of algebraic variables 𝐳(⋅)  of the 
dynamical system (e.g., aircraft dynamics for aircraft trajectory optimization problem), respectively. 𝜁 
denotes the vector of uncertain variables assumed to have a known probability distribution function 
(e.g., ensemble weather forecast in this case). The uncertain variables perturb the state, control, and 
algebraic variables through the system dynamics as 𝐱̇(𝑡) = 𝐟(𝑡, 𝐱(𝑡), 𝐮(𝑡), 𝐳(𝑡), 𝜁) . The nonlinear 
function 𝐟(⋅) is assumed to be a measurable function in 𝜁.  

In the following, we will briefly present the required elements to formulate climate optimal trajectory 
planning problem. 
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2.2.2 Optimization constraints 

Generally, three types of constraints are considered for the trajectory optimization problems known 
as dynamical constraints, path constrain, and boundary constraints.  

For ROOST, the following full 4D point-mass model of aircraft is considered as the dynamical constraint 
allowing to obtain feasible motion of aircraft: 

[
 
 
 
 
𝜙̇

𝜆̇
ℎ̇
𝑣̇
𝑚̇]
 
 
 
 

=

[
 
 
 
 
 

(𝑣cos𝛾cos𝜒 +𝑤𝑦)(𝑅𝑀(𝜙) + ℎ)
−1

(𝑣cos𝛾sin𝜒 + 𝑤𝑥)((𝑅𝑁(𝜙) + ℎ)cos𝜙)−1

𝑣sin𝛾

(T(𝐶𝑇) − 𝐷(𝐶𝐿))𝑚
−1 − 𝑔sin𝛾

−𝐹𝐹(𝐶𝑇) ]
 
 
 
 
 

 

where 𝜆 is the longitude, 𝜙 is the latitude, ℎ is the altitude, 𝑣 is the true airspeed, 𝑚 is the mass, 𝐶𝑇 is 
the thrust coefficient, 𝛾  is the climb angle, 𝜒  the heading and 𝐶𝐿(𝛾) = (2𝑚𝑔cos𝛾)/(𝜌𝑣2𝑆) . In 
addition, (𝑤𝑥 , 𝑤𝑦)  are the components of the wind, 𝑅𝑀  and 𝑅𝑁  are the Earth’s ellipsoid radii of 

curvature in the meridian and the prime vertical, respectively, T and are the magnitude of the thrust 
and drag forces, 𝑔 is the Earth’s gravity, 𝐹𝐹 is the fuel burn rate and 𝑆 is the wetted surface of the 
aircraft. BADA model  is employed to provide the aerodynamic and propulsive performance of the 
aircraft. As the trajectory optimization is performed within the structured airspace, the evolutions of 
aircraft’s states are constrained [21, 23]. The following briefly presents our proposed modeling of 
airspace structure and the flight plan. 

The airspace is modeled as a directed acyclic graph 𝐺 = (𝑉, 𝐸) , where 𝑉  represents navigation 
waypoints connected by airway edges 𝑒 ∈ 𝐸. The trajectory is assumed to start at the end of the 
departure procedure and ends at the beginning of the arrival procedure to the destination airport, 

denoted as 𝑜 ∈ 𝑉 and 𝑑 ∈ 𝑉, respectively. We define the flight plan 𝐹 with a tuple (𝑅, FL,M, 𝐶, 𝐷, 𝑑𝐷). 
In the flight plan (𝐹), the route (or lateral path) denoted by 𝑅 includes a sequence of waypoints i.e., 𝑅

:= (𝑟0, 𝑟1, . . . , 𝑟𝑛𝑟). The vertical profile of the cruise, i.e., FL, is composed of an ordered sequence of 

tuples of the form (𝑟𝑘, FL𝑘), indicating that, if the aircraft is in the cruise phase, it will switch to the 

flight level FL 𝑘  when reaching the waypoint 𝑟𝑘  (see ). The Mach schedule M : = (M0, . . . ,M𝑛𝑟) 

indicates the target Mach number M𝑘 at waypoint 𝑟𝑘, during the cruise phase. The climb and descent 
profiles 𝐶, 𝐷:ℝ → ℝ are represented by continuous and piecewise-differentiable functions mapping 
the altitude to the target airspeed during the climb and descent phases, respectively. Finally, a scalar 
variable 𝑑𝐷  shows the distance-to-go to the destination node at which the aircraft should end the 
cruise and start the descent phase. 



D2.2.010- REPORT ON RESULTS AND ASSESSMENT OF THE ROBUSTNESS OF ECO-
EFFICIENT AIRCRAFT TRAJECTORIES 

                                         
 

 

Page I 15 
 
 

  
 

 

 

Figure 2. Structure of airspace. 

In addition to the dynamical constraint and structure of airspace, a set of path and boundary conditions 
are required to generate applicable and feasible trajectories. Initial and final values of states such as 
the geographical location of origin and destination, initial mass, and initial speed are some of the 
considered boundary conditions. Feasible ranges for speed profile and altitude are examples of the 
considered path constraints [22].  

2.2.3 Cost functional 

Within the proposed robust aircraft trajectory optimization, the uncertainty is considered in the 
weather forecast. To consider climate impact within aircraft trajectory planning, information on the 
climate impacts of CO2 and non-CO2 emissions is necessary and needs to be included in the objective 
function. For this purpose, we employ the latest version of aCCFs (i.e., V1.1) provided in D1.2. In 
addition to the climate impact, the operating cost is a crucial aspect that needs to be considered as it 
is one of the main interests of airliners. In this respect, our objective function is defined as: 

Objective function (J) = 𝜓CST ⋅ 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 Operating cost+ 𝜓CLM ⋅ 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 Climate impact 

where 𝜓CST and 𝜓CLM are weighting parameters penalizing cost and climate impact, respectively. Such 
a definition of objective function allows considering both operating cost and climate impact 
simultaneously as objectives to be minimized. However, a trade-off typically exists between these two 
objectives determined by selecting the corresponding weighting parameters, i.e., 𝜓CST and 𝜓CLM. This 
objective function is mathematically formulated as: 
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𝐽 = 𝜓CST[𝜓𝑡 ⋅  Exp. Flight time+ 𝜓𝑚 ⋅ Exp. Fuel burnt] + 𝜓CLM ⋅ Exp. ATR

 Exp. Flight time: 𝔼{FT} := 𝔼{𝑡𝑓 − 𝑡0}

 Exp. Fuel burnt: 𝔼{FB} : = 𝔼{𝑚0 −𝑚𝑓}

 Exp. ATR: 𝔼{ATR} : = 𝔼{∫ ∑𝜓ATR,𝑖

5

𝑖=1

𝑡𝑓

𝑡0

⋅ ATR𝑖(𝑡, 𝐱(𝑡), 𝐮(𝑡), 𝜁)d𝑡}

 

 

(2) 

             for 𝑖 ∈ {CH4,Cont.,O3,H2O,CO2}: 

ATRO3(𝑡, 𝐱, 𝐮, 𝜁) = 10
−3 × aCCFO3(𝑡, 𝐱, 𝜁) ⋅ 𝑚̇𝑛𝑜𝑥(𝑡)

ATRCH4(𝑡, 𝐱, 𝐮, 𝜁) = 10
−3 × aCCFCH4(𝑡, 𝐱, 𝜁) ⋅ 𝑚̇𝑛𝑜𝑥(𝑡)

ATRCont.(𝑡, 𝐱, 𝜁) = 10
−3 × aCCFCont.(𝑡, 𝐱, 𝜁) ⋅ 𝑣𝑔𝑠(𝑡)

ATRH2O(𝑡, 𝐱, 𝐮, 𝜁) = aCCFH2O(𝑡, 𝐱, 𝜁) ⋅ 𝑚̇(𝑡)

ATRCO2(𝑡, 𝐱, 𝐮, 𝜁) = aCCFCO2 ⋅ 𝑚̇(𝑡)

 

Where 𝐱, 𝐮 are the state and control vectors of aircraft dynamical model [22, 23], ATRi and aCCFi are 
the average temperature response over the next 20 years with business-as-usual (BAU) future 
emission scenario and the algorithmic climate change function associated with species 𝑖, 𝑚 is flight 
mass, 𝑡  is the flight time, 𝑣𝑔𝑠  is the groundspeed,  𝑚̇𝑛𝑜𝑥(𝑡)(= 𝐹𝐹(𝐮, 𝑡) ⋅ EINOx

(𝐱, 𝐮, 𝑡))  is the NOx 

emission rate in [g(NO2)/s], EINOx
(⋅) is the NOx emission index in [g(NO2)/kg (fuel)] and FF is the fuel 

flow in [kg(fuel)/s]. EINOx
(⋅) is calculated employing modified Boeing Fuel Flow Method 2 [2][8]. 𝑡0 and 

𝑡𝑓 are the initial flight time and final flight time weighted by 𝜓𝑡 = 0.75 [USD/s], and 𝑚0 and 𝑚𝑓 are the 

initial mass and final mass weighted by 𝜓𝑚 = 0.51 [USD/kg] to express operating cost in USD called 
simple operating cost (SOC) [24]. As can be seen in the formulation of the objective function, the 
expected operator has been used (i.e., 𝔼{. } ). This is due to the effects of the weather forecast 
uncertainty on the aircraft trajectory. The forecast-related uncertainties are denoted here with the 
vector 𝜁. For instance, the uncertainty in ATRO3(𝑡, 𝐱, 𝜁) is due to uncertainty in aircraft trajectories 

(i.e., aircraft mass (𝑚(𝑡))  which is affected by uncertainty in temperature and wind) and also 
temperature and geopotential for calculating aCCFO3.  

2.2.4 Solution Approach: Probabilistic 4D flight planning in structured 
airspace 

The optimal control problem formulation stated in equation (1) is a general form. Depending on the 
benchmark problem, some reformulations and approximations are normally made to address the 
required performances, such as computational complexity. For instance, within the current 
formulation (i.e., equations (1) and (2)), the decision variable is only the control policy in the 
continuous domain; however, within some numerical approaches, such as the direct collocation 
approach, the system’s states are also considered as decision variables and represented in a discrete 
fashion [22]. In this section, we will slightly reformulate the optimal control problem to make it more 
suited for the proposed path planning problem. The proposed aircraft trajectory optimization is stated 
by employing the method firstly developed in [21], which is a stochastic optimization technique for the 
structured airspace and capable of determining an optimized trajectory in four dimensions, i.e., 
latitude, longitude, altitude, and time. The detailed discreption of methodology for planning robust 
climate-aware trajectories  can be found in [23]. 
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The goal is to find an optimal flight plan 𝐹𝑜 (i.e., (𝑅𝑜, FL
𝑜
,M

𝑜
, 𝐶𝑜, 𝐷𝑜, 𝑑𝐷

𝑜 ), (see Section 1.1.1)) that 
minimizes the objective function given in equation (2) with respect to some dynamical, path and 
boundary constraints. For this purpose, as the first step, the performance of any given flight plan needs 
to be evaluated considering the defined objective function (equation (2)). Then, finding the most 
optimal flight plan, satisfying the constraints and minimizing the objective function by employing an 
iterative algorithm.  

To determine the performance of a flight plan and evaluate the cost function equation (2), the 
corresponding trajectories of the aircraft are to be calculated using the aircraft dynamical model. 
Aircraft trajectories are affected by uncertainty in atmospheric variables, including temperature and 
wind. The uncertainty in magnitude and direction of the wind will affect groundspeed and, 
consequently, flight time and fuel burn. In addition, uncertainty in temperature affects fuel burn 
because the propulsive and aerodynamic performance of the aircraft and also airspeed depend on 
temperature . From equation (2), one can conclude that the uncertainty in flight time and flight mass 
can also affect the climate impacts (see ). In this study, the uncertainty in meteorological variables 
represented using ensemble forecasts is considered in the trajectory optimization problem. In the 
proceeding formulations, the set of required weather variables is denoted as random weather variable 
𝑊: (T, 𝑤𝑥 , 𝑤𝑦,GH,r,q,PVU,OLR), taking discrete values as {𝑊1,𝑊2⋯ ,𝑊𝑁}, with a probability of 𝐏(𝑊 =

𝑊𝑖) = 𝑁
−1, for 𝑖 = 1,⋯ ,𝑁. In addition to uncertainty in meteorological variables, the initial flight 

time and flight mass are also considered with uncertainties, which are modeled as Gaussian variables, 
i.e., 𝑡0 ∼ 𝑁(𝑡‾0, 𝜎𝑡0) and 𝑚0 ∼ 𝑁(𝑚‾ 0, 𝜎𝑚0

), respectively.  shows how the uncertainties associated with 

initial flight conditions and meteorological variables are propagated and affect the efficiency of aircraft 
trajectory within climate optimal aircraft trajectory planning. 

 

Figure 3. Propagation of the uncertainty (associated with initial flight conditions and meteorological variables) 
within climate optimal aircraft trajectory planning. 

Heun’s method [21] is adopted for integrating the aircraft dynamics (i.e., point-mass model) along 
discretized segment of route for each phase, i.e., climb, descent, and cruise  using (d𝑡)(d𝑠)−1 = 𝑣𝑔𝑠

−1. 

The expected final mass, final time, and ATR after trajectory integration are then received as 

[𝔼{FT},  𝔼{FB},  𝔼{ATR}] = 𝔼{TI(𝐹,𝑊, 𝑡0, 𝑚0)} 
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where TI(⋅) denotes the integration of system dynamics for a given flight plan, a realization of weather 
variables, and sampled initial conditions. If we use an unweighted average between all ensemble 
members, we have 

[𝔼{FT},  𝔼{FB},  𝔼{ATR}] ≈
1

𝑁EPS
∑ TI

𝑁

𝑗=1

(𝐹,𝑊𝑗, 𝑡0
𝑗
,𝑚0

𝑗
) (3) 

where the initial times 𝑡0
𝑗
,𝑚0

𝑗
∼ 𝑡0, 𝑚0 are sampled independently for each member in Monte Carlo-

like fashion and the expected ATR is calculated as 

𝔼{ATR} =
1

𝑁EPS
∑ ATR𝑗
𝑁EPS

𝑗=1

;  ATR𝑗 =∑ATR𝑖
𝑗

5

𝑖=1

 

for 𝑖 ∈ {CH4,Cont.,O3,H2O,CO2}. For instance, ATR𝑗 for ozone and contrails can be calculated as 

ATRO3

𝑗
= 10−3∫ aCCFO3

𝑗
𝑡𝑓
𝑗

𝑡0
𝑗

(𝐱𝑗(𝑡𝑗), 𝑡𝑗) × 𝐹𝐹(𝐱𝑗(𝑡𝑗 , 𝑡𝑗), 𝐮𝑗(𝑡𝑗)) × EINOx

𝑗
(𝐱𝑗(𝑡𝑗), 𝐮𝑗(𝑡𝑗 , 𝑡𝑗)

⏞                              

𝑚̇𝑛𝑜𝑥
𝑗

(𝑡𝑗)

)d𝑡𝑗

ATRCont.
𝑗

= 10−3∫ aCCFCont.
𝑗

𝑡𝑓
𝑗

𝑡0
𝑗

(𝐱𝑗(𝑡𝑗), 𝑡𝑗)𝑣𝑔𝑠
𝑗
(𝑡𝑗)d𝑡𝑗 = 10−3∫ aCCFCont.

𝑗
𝑠𝑓

0

(𝐱𝑗(𝑡𝑗(𝑠)), 𝑡𝑗(𝑠))d𝑠

 (4) 

where 𝐱𝑗(𝑡𝑗) and 𝐮𝑗(𝑡𝑗) are the state and control variables of the aircraft considering 𝑗-th realization 

of weather variables and 𝑗-th sampled initial conditions, d𝑠 = 𝑣𝑔𝑠
𝑗
⋅ d𝑡𝑗, and 

aCCFO3

𝑗
(𝐱𝑗(𝑡𝑗), 𝑡𝑗) : = aCCF𝑂3(T

𝑗(𝐱𝑗(𝑡𝑗), 𝑡𝑗),GH𝑗(𝐱𝑗(𝑡𝑗), 𝑡𝑗))

aCCFCont.
𝑗

(𝐱𝑗(𝑡𝑗), 𝑡𝑗) : = aCCFCont.(T
𝑗(𝐱𝑗(𝑡𝑗), 𝑡𝑗),OLR𝑗(𝐱𝑗(𝑡𝑗), 𝑡𝑗), r𝑗(𝐱𝑗(𝑡𝑗), 𝑡𝑗))

 

where the weather variables such as T𝑗 , GH𝑗  are the 𝑗-th ensemble member of the EPS weather 
forecast. As can be seen in equation (4), the climate impacts due to the NOx emission depends on the 
amount of NOx emitted in climate sensitive regions, while for contrails, it depends on the distance 
flown in persistent contrail formation areas. Since the calculations are similar for different members 
(i.e., for each ensemble member in equation (3) to calculate expected values), parallelization would be 
beneficial in reducing computational time. Here, CUDA, a tool for general-purpose computing on the 
graphics processing unit, is employed to parallel the computations. 

The expected values obtained from equation (3) are for a specific flight plan. By these settings, the cost 
function equation (2) for this flight plan can be approximately evaluated with the following equation 

 𝐽(𝐹) = 𝜓CST[𝜓𝑡 ⋅ 𝔼{FT} + 𝜓𝑚 ⋅ 𝔼{FB}] + 𝜓CLM ⋅ 𝔼{ATR}. (5) 

 shows how the expected performance is calculated and evaluated for a given flight plan and ensemble 
weather forecast. The objective now is to find a flight plan that minimizes equation (5), i.e.,: 

min𝐹 𝐽(𝐹) = 𝜓CST[𝜓𝑡 ⋅ 𝔼{FT} + 𝜓𝑚 ⋅ 𝔼{FB}] + 𝜓CLM ⋅ 𝔼{ATR} 

 Since the flight plan includes both discrete and continuous decision variables, the optimizer should be 
capable of solving the optimization within the hybrid decision spaces. A classical approach to solving 
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such optimization problems is mixed-integer nonlinear programming, which is mathematically 
complex and computationally intensive.  

To account for discrete and continuous decision variables in an integrated manner, the optimization is 
performed on the space of probability distributions defined over flight plans instead of directly 
searching for the optimal profile. Then, the probability distribution over flight plans is parameterized, 
allowing to generate multiple flight plans stochastically. The augmented random search algorithm is 
employed and implemented on GPUs to deliver a near-optimal solution to the resulting stochastic 
optimization in seconds. The detailed explantion of the approach and implementation are provided in 
[21,23]. 

 

Figure 4. Calculation and evaluation of the expected performance for a given flight plan and ensemble weather 
forecast. 

2.3 Continuous optimal control approach 

The Trajectory Optimisation Module (TOM) is an optimisation tool based on an optimal control 
approach. The workflow applied in the course of WP2 is illustrated in . All simulations are controlled 
with a process control in which the route, the aircraft, the engine as well as atmospheric conditions 
are selected. Based on the inputs within the control script, several inputs are loaded, e.g. performance 
data, emission characteristics, atmospheric data as well as climate impact information and cost 
models. These serve as input for the optimal control problem which consists of the optimization 
problem boundary conditions (e.g. flight envelope constraints), the dynamic behaviour of the 
optimization problem (e.g. equations of motion) as well as the objective function (e.g. costs, climate 
impact). Finally the problem is solved using an optimal control problem solver. 



D2.2.010- REPORT ON RESULTS AND ASSESSMENT OF THE ROBUSTNESS OF ECO-
EFFICIENT AIRCRAFT TRAJECTORIES 

                                         
 

 

Page I 20 
 
 

  
 

 

 

Figure 5. Workflow of the Trajectory Optimization Module (TOM) 

In the following, the general optimal control problem formulation is described (see section 1.1.1). Then 
the control, state, path and event vectors of the optimization problem are defined (see section 1.1.1). 
The chosen cost functional is explicated in section 1.1.1. Finally, dynamic constraints (see section 1.1.1) 
and the solving of the optimization problem are presented (see section 1.1.1). 

2.3.1 General optimal control problem 

The Trajectory Optimization Module relies on an optimal control approach [11]. Hence, the aircraft’s 
motion is described  as a vector of state variables 𝒙(𝑡) which can be influenced by a vector of control 
variables 𝒖(𝑡). A trajectory is considered optimal, if the temporal development of the control variables 
𝒖(𝑡) leads to a minimization of the cost functional 𝐽 as defined in equation  while both, the dynamic 
constraints according to equation  as well as the boundary conditions of the state and control variables 
(equations  to ) are fulfilled. Further adaptations of the optimization problem can be implemented by 
additional regulations of a path vector 𝒑(𝑡) as shown in equation . Additionally, event constraints can 
be used in order to define further initial and final boundary values for variables which are not 
considered as state variables (equations  and ). 

 

𝐽 = 𝑐Υ ∙ Υ (𝑡0, 𝑡𝑓 , 𝒙(𝑡0), 𝒙(𝑡𝑓)) + 𝑐Ψ ∙ ∫ Ψ(𝒙(𝑡), 𝒖(𝑡), 𝑡)d𝑡
𝑡𝑓

𝑡0

 (2) 

𝒙̇(𝑡) = 𝑓((𝒙(𝑡), 𝒖(𝑡), 𝑡)) (3) 

𝒙(𝑡0) 𝜖 [𝒙𝑚𝑖𝑛,0; 𝒙𝑚𝑎𝑥,0] (4) 

𝒙(𝑡𝑓) 𝜖 [𝒙𝑚𝑖𝑛,𝑓; 𝒙𝑚𝑎𝑥,𝑓] (5) 

𝒙(𝑡) 𝜖 [𝒙𝑚𝑖𝑛; 𝒙𝑚𝑎𝑥] (6) 

𝒖(𝑡) 𝜖 [𝒖𝑚𝑖𝑛; 𝒖𝑚𝑎𝑥] (7) 

𝒑(𝑡) 𝜖 [𝒑𝑚𝑖𝑛; 𝒑𝑚𝑎𝑥] (8) 

𝒆(𝑡0) 𝜖 [𝒆𝑚𝑖𝑛,0; 𝒆𝑚𝑎𝑥,0] (9) 

𝒆(𝑡f) 𝜖 [𝒆𝑚𝑖𝑛,f; 𝒆𝑚𝑎𝑥,f] (10) 
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2.3.2 Definition of state, control, path and event vectors 

The aircraft state vector is defined as 𝒙 = [λ, φ, 𝐻, 𝑣TAS,𝑚,𝑚𝑖]
𝑇. Therein, λ depicts the longitude,  φ 

the latitude, 𝐻 the flight altitude, 𝑣TAS the true airspeed (relative to the air) and 𝑚 the aircraft mass. 
The accumulated masses of the engine emissions are denoted by 𝑚𝑖 (𝑖 ∈ CO2, H2O,NOx).  

In order to change the aircraft motion, the control vector 𝒖 = [χH, 𝑣̇TAS, 𝜏]
𝑇 consists of heading χH, 

acceleration 𝑣̇TAS and relative thrust  𝜏 (0 for minimum and 1 for maximum thrust).  

For the definition of additional constraints, a path vector is defined as  𝒑 = [Ma, 𝑣CAS, 𝑐𝐿,rel]
𝑇, where 

Ma represents the Mach number,  𝑣CAS the calibrated airspeed and 𝑐𝐿,rel the relative lift coefficient.  

Furthermore, the event vector 𝒆 = [𝐻𝑝, 𝑣CAS]
𝑇  contains the pressure altitude 𝐻𝑝 as well as the 

calibrated airspeed 𝑣CAS. The constraints used for the optimization according to equations  to  are 
summarized in . 

Table 1: Limits of state, control, path and event vectors 

Variable Minimum Value Maximum Value 

Limits of state variables at initial point according to equation  

λ0 λ0
1) λ0

1) 

φ0 φ0
1) φ0

1) 

𝐻0 2,548 m 3,548 m 

𝑣TAS,0 130 m/s 160 m/s 

𝑚0 𝑚ZFW
2)+𝑚FOB,0

1) 𝑚TOW
2) 

𝑚𝑖,0 0 kg 0 kg 

Limits of state variables at final point according to equation  

λ𝑓 λ𝑓
1) λ𝑓

1) 

φ𝑓 φ𝑓
1) φ𝑓

1) 

𝐻𝑓 2,548 m 3,548 m 

𝑣TAS,𝑓 130 m/s 160 m/s 

𝑚𝑓 𝑚ZFW
2)+𝑚FOB,f

1) 𝑚ZFW
2)+𝑚FOB,f

1) 

𝑚𝑖,𝑓 0 kg 107 kg 

 

 

Variable Minimum Value Maximum Value 

General limits of state variables according to equation  

λ -40° 70° 

φ 20° 90°  
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𝐻 2,500 m 13,500 m 

𝑣TAS 130 m/s 270 m/s 

𝑚 𝑚ZFW
2)+𝑚FOB,f

1) 𝑚TOW
2) 

𝑚𝑖 0 kg 107 kg 

General limits of control variables according to equation  

χH 0° 360° 

𝑣̇TAS -2 m/s2 2 m/s2 

τ 0 1 

General limits of path variables according to equation  

Ma 0 Mamax
2) 

𝑣CAS 0 𝑣CAS,max
2) 

𝑐𝐿,rel 0 1 

Limits of event variables at initial point according to equation  

𝐻𝑝,0 3,048 m 3,048 m 

𝑣CAS,0 128.61 m/s 128.61 m/s 

Limits of event variables at final point according to equation  

𝐻𝑝,𝑓 3,048 m 3,048 m 

𝑣CAS,f 128.61 m/s 128.61 m/s 

1) Obtained initial and final latitude and longitude are extracted from the 
fictitious route network 

2) Obtained from EUROCONTROL’s BADA 4.2 aircraft performance database; 
𝑚ZFW is estimated assuming a load factor of 0.85, which was the average 
value for European flights in 2018 

 

 

2.3.3 Cost functional 

For the optimisation with respect to costs and climate impact in the course of FlyATM4E, the cost 
functional is chosen as formulated in equations  and . It is defined as the weighted sum of the simple 
operating costs (costs are represented as weighted sum of fuel consumption and flight time) and the 
climate impact expressed as average temperature response (ATR) over 20 years which is represented 
by the algorithmic Climate Change Functions (aCCFs) which have been further developed in the course 
of WP1. Also, the costs and the resulting climate impact are normalized with respect to the 
corresponding reference values of the minimum cost trajectory. In order to determine pareto-optimal 
solutions of the optimisation problem, the weighting factors 𝑐SOC and 𝑐ATR are varied between 0 and 
1.  

Within FlyATM4E the weights of costs and climate impact are varied between the two extreme cases 
(0 and 1) of climate optimal and cost optimal routings in order to explore the full spectrum of possible 
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solutions. However, the final choice of the weights is considered to be defined by politics as there 
exists no single answer or ideal pair of values. For dedicated strategies, we will provide 
recommendations on how to select suitable weighting factors depending on the use case (e. g. method 
for the selection of eco efficient trajectories developed in WP3). 

𝑱 = 𝑐SOC ∙ 𝑆𝑂𝐶(𝑚0 −𝑚𝑓 , 𝑡𝑓 − 𝑡0)⏟              
Simple operating costs

∙ 𝑆𝑂𝐶 ref
−1+. .. 

…𝑐ATR ∙ ∫ (aCCFCO2 + aCCFH2O) ∙ FF + (aCCFO3 + aCCFCH4) ∙ EINOx ∙ FF + aCCFContrails ∙ 𝑣TAS d𝑡 
𝑡𝑓

𝑡0⏟                                                          
ATR

∙ ATRref
−1  

(11) 

𝑐SOC + 𝑐ATR = 1;    𝑐SOC, 𝑐ATR  ∈ [0,1] (12) 

 

 

 

2.3.4 Dynamic constraints 

The dynamic constraints of the optimal control problem are defined by equations  to  which 
substantially are based on the equations of motion of a point mass aircraft with variable mass and 
three degrees of freedom. Assuming a spherical earth with radius 𝑅𝐸, the temporal changes of latitude 
and longitude can be described by equations  and . Here, 𝛾 depicts the flight path angle obtained from  

sin 𝛾 = 𝐻̇/𝑣TAS.  

The vertical speed of the aircraft 𝐻̇ is estimated based on the total energy model according to equation 
; the minimum and maximum thrust (Thmin, Thmax) as well as the aerodynamic drag 𝐷 are estimated 
using the Base of Aircraft Data (BADA) 4.2 aircraft performance models provided by EUROCONTROL 
[15]. 

The temporal derivative of the true airspeed 𝑣TAS is equal to the linear acceleration 𝑣̇TAS which is 
serving as control variable (see equation ). Additionally, the change of aircraft mass equals the negative 
fuel flow FF  which is also obtained by applying the BADA 4.2 aircraft performance models (see 
equation ). The emission flow rates 𝑚̇𝑖  (𝑖 ∈ CO2, H2O,NOx) are estimated by multiplying the fuel flow 
FF  with the corresponding emission index EI𝑖  according to equation . Here, EICO2  and EIH2O  are 
determined assuming a stoichiometric combustion. In contrast, EINOx  is calculated using the 
EUROCONTROL modified Boeing Fuel Flow Method 2 [2][8]. 

𝜆̇ =
𝑣TAS ∙ cos 𝛾 ∙ sin χH
(𝑅𝐸 +𝐻) ∙ cos𝜑

 (13) 

𝜑̇ =
𝑣TAS ∙ cos 𝛾 ∙ cos χH

(𝑅𝐸 +𝐻)
 (14) 

𝐻̇ =
[𝜏 ∙ (Thmax − Thmin) + Thmin − 𝐷] ∙ 𝑣TAS

𝑚 ∙ 𝑔
−
𝑣TAS ∙ 𝑣̇TAS

𝑔
 (15) 

𝑣̇TAS = 𝑣̇TAS (16) 

𝑚̇ = −FF (17) 

𝑚̇𝑖 = −FF ∙ EI𝑖 (18) 
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2.3.5 Solving the optimal control problem 

The resulting optimal control problem which is defined by the cost functional, the dynamic constraints 
as well as the limitations of control-, state-, path-, and event-vectors (see equations  to ), is solved 
using the MATLAB optimal control Toolbox GPOPS II [16]. GPOPS II is based on a direct approach and 
transforms the continuous optimal control problem into a discrete nonlinear programming problem 
(NLP). Finally, the NLP is processed by the NLP solver IPOPT [18]. 
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3 Results  

3.1 Stochastic flight plan optimization 

The simulation results employing ROOST are presented in two parts: single route analysis and 
aggregated results of optimizing the top 100 routes.  Before presenting the results, we will depict the 
aCCFs for a specific scenario and discuss the variability in aCCFs due to the variability in atmospheric 
conditions characterized using EPS.  

3.1.1 Uncertainty analysis 

The aCCFs for 13th of June 2018, 00:00 am UTC over the European region at pressure level 250 are 
depicted in . As can be seen, aCCFs provide spatially resolved information on the climate impacts 
associated with aircraft emissions. To compare the contribution of each species to the total climate 
impact, we adopt typical transatlantic fleet mean values to unify the units of aCCFs in K/kg(fuel). The 
approximated conversion factors for NOx emission and contrails are 13 × 10−3Kg(NO2)/Kg(fuel) and 

0.16 × Km/Kg(Fuel), respectively. It is clear from the merged aCCF that the contrails have dominant 
climate effects. 

 

Figure 6. Algorithmic climate change functions on 13th of June 2018, 00:00 am UTC over European region at 
pressure level 250hPa. 

Now, we investigate the effects of variability in atmospheric variables generated using the EPS on the 
calculated aCCFs. As aCCFs take as inputs meteorological variables, 𝑁 different aCCFs can be calculated 
for the EPS weather forecast. For instance, atmospheric variables temperature and relative humidity 
over ice are required for aCCF of (night-time) contrails. Feeding 𝑁  probable realizations of these 
atmospheric variables (i.e., ensemble members), 𝑁 different aCCFs (i.e., aCCFCont𝑖  for 𝑖 = 1,⋯ ,𝑁) are 

calculated.  
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Figure 7. Standard deviation of the normalized weather variables calculated using 10 ensemble members at 
250hPa 

To investigate the degree of uncertainty (or variability) in the atmospheric variables provided by the 
EPS and its effects on the computed aCCFs, the standard deviation (STD) is taken from ten ensemble 
members of the ERA5 reanalysis data products2.  shows the STD of weather variables required to 

calculate aCCFs on 13th of June 2018, 00:00 am UTC, at the pressure level of 250hPa. The STD is taken 
over the normalized variables for comparison purposes. The variability of geopotential and 
temperature is small compared to potential vorticity and relative humidity. The STDs of the calculated 
aCCFs based on the ensemble members are illustrated in . Since the aCCF of NOx  emission (i.e., 
methane, ozone and PMO) depends on geopotential and temperature, its STD is small compared to 
the aCCFs of water vapor and (night-time) contrails, which are based on potential vorticity and relative 
humidity, respectively. Notice that the uncertainty in contrails’ climate impact is much higher than 
water vapor due to the variability of relative humidity in satisfying the persistency condition of 
contrails, called persistent contrail formation areas (PCFA) [23]  (see STD of PCFA in ). It can be 
concluded that up to 40% deviation from mean values is probable with the aCCF of contrails. In spite 
of neglectable uncertainty in the aCCF of NOx, and also relatively low uncertainty in the aCCF of water 
vapor compared to aCCF of contrails, due to the dominant climate impact of contrails, the net non-
CO2 climate effect is highly uncertain (see STD of the merged aCCF in ), which must be crucially taken 
into consideration. 

 

 

2 https://cds.climate.copernicus.eu/ 
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Figure 8. Standard deviation of the normalized aCCFs calculated using 10 ensemble members at 250hPa. 

3.1.2 Single Route analysis 

The effectiveness of the proposed optimization algorithm to plan robust climate optimal aircraft 
trajectories with respect to uncertain meteorological conditions is analyzed for a flight from Frankfurt 

to Kyiv on three different days: on 13th of June 2018, 0000UTC, a scenario in which aircraft flies through 
areas favorable for the formation of persistent contrails (i.e., warming contrails), 20th of December 

2018, 1200UTC, a scenario with cooling contrails, and 10th of December 2018, 1200UTC, a scenario 
with no formation of persistent contrails. The dominant climate impact of contrails is the main reason 
for selecting these scenarios, providing better insight into the mitigation potentials.   

For the route graph, the full airspace graph of the considered days is filtered and processed to include 
all paths from the standard instrument departures (SIDs) of the origin airport to the standard 
instrument arrivals (STARs) of the destination airport with the maximum length of 104% of the shortest 
path length. The initial flight time and mass are modeled as Gaussian variables: 𝑡0 ∼
𝑁(0000 UTC, 10)[s] and 𝑚0 ∼ 𝑁(61600,10)[kg]. Due to ease of availability, the ERA5 Reanalysis data 
products containing ten ensemble members are adopted in this study. However, forecast data with 
more ensemble members can be employed similarly. 

The weighting parameters of the objective function given in equation (5) are selected as: 𝜓CST = 𝛼 [-] 
and 𝜓CLM = (1 − 𝛼[−])K [USD/K]. K is a scaling factor determined as 
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k =
SOCclimate − SOCcost

ATRcost − ATRclimate
 

where for instance, SOCclimate is the SOC calculated when the optimization objective is only the climate 
impact or ATRcost is the ATR when the objective is only SOC. 𝛼 ∈ [0,1] is a weighting parameter that 
penalizes cost versus climate impact in which 𝛼 = 0 is the pure cost optimal and 𝛼 = 1 is the pure 
climate optimal routing strategies. In the simulations, we consider five different values for 𝛼 in order 
to explore the trade-off between operating cost and climate impact represented respectively by SOC 
and ATR. 

3.1.2.1 Example 1 (Formation of persistent contrails during nighttime) 

We consider a scenario in which aircraft flies through warming contrails for the cost optimal routing 
option. Before presenting the results, the performance of ROOST in terms of convergence and 
computational time is analyzed.  

Since the optimization approach is stochastic, different results may be obtained with different runs. 
To explore the sensitivity of the optimization method, 50 different runs are performed with similar 
settings for the pure cost (i.e., 𝛼 = 1.0) and pure climate optimal (i.e., 𝛼 = 0.0) routing options. Then, 
the objective gap is calculated considering the best performance obtained from different solutions 
(i.e., the minimum value of 𝐽) as the reference. The convergence performances with averaged values 
as solid lines and 0, 10, 90, and 100 percentiles are depicted in . For both cases, the estimated objective 
gaps quickly reduce up to 1% of the values of the objective functions 𝐽 with around 700 iterations (≈
2.8𝑠) for cost and 900 iterations (≈ 3.6𝑠) with climate optimal one. As the climate optimal routing 
option is associated with the inclusion of aCCFs calculated from meteorological variables, the 
optimization is much more complex, which can be validated in . With around 4000 iterations (16𝑠), the 
objective gap is reduced up to 0.5% of 𝐽. Consequently, with a maximum of 4000 iterations, near-
optimal performance can be obtained with +0.5%  maximum deviation around the best-obtained value 
(i.e., most optimal case). 

 

Figure 9. Convergence performance of the optimization approach (1 iterations ≈4 ms). 
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Now, we proceed to present the obtained results. The aircraft profiles and climate responses for 
different routing options are given in Figure 12 and  Figure 13, respectively. The SOC depends on the 
flight time and fuel consumption. Therefore, the aircraft for routing strategies with higher values of 𝛼, 
such as 𝛼 = 1.0,0.8, tends to fly at higher altitudes within the vertical constraints because flying at 
higher altitudes is beneficial to reducing fuel consumption, which contributes a large part of the total 
operating cost (see ). By analyzing the lateral paths depicted in a with the direction and speed of wind 
at different flight levels, one can see that aircraft deviates from the shortest path to benefit from 
stronger tailwinds. For trajectories with lower climate impacts, as can be seen in b, the aircraft flies at 
relatively lower altitudes compared to cost optimal routing options mainly to avoid the formation of 
persistent contrails (due to warming impacts during nighttime). The climate optimal routing options 
reduce the warming effects of contrails. Although the warming climate impact of NOx emission and 
water vapor increases with the climate optimal trajectories, the net climate impact decreases. This is 
because the contrails’ climate impact outweighs the impact associated with other species. The 
contribution of each species to total climate impact, variability of obtained climate impacts, and SOC 
with the ranges of uncertainty and Pareto-frontiers are provided in . For a specific case (𝛼 = 0.2), by 
accepting an increase of 4% in cost, there is a potential to mitigate the climate impact by 55% 
considering mean values. In Section 1.1.1, it was shown that the variability of relative humidity among 
ensemble members is high, leading to high uncertainty in aCCF of contrails. As expected, the obtained 
contrails’ climate impact is highly uncertain when aircraft flies through areas sensitive to form 
persistent contrails. In contrast, as the aircraft tends to avoid PCFA, the ranges of uncertainty reduce, 
in which, for the complete avoidance that is achieved with 𝛼 = 0.0, the climate impact is almost 
deterministic. In addition, SOC requires flight time and fuel burnt to represent operating cost in USD, 
and as it is affected by relatively less uncertain atmospheric variables wind and temperature 
(compared to relative humidity) for the considered case study (analyzed in Section 1.1.1), the 
uncertainty in its value is small. 

By analyzing the contribution of each species to the net ATR for different 𝛼’s, one can conclude that 
the mitigation potential is achieved mainly by avoiding contrails sensitive areas, which result in slight 
increases NOx  emission a. However, when the contrails are completely avoided (𝜶 = 𝟎. 𝟐 ), the 
optimizer tends to reduce NOx emission mainly by reducing speed to reduce the fuel flow required to 
calculate NOx emission index and also total NOx emission (i.e., NOx emission = NOx emission index * 
fuel burnt). Reducing NOx  emission due to flying at lower speed is achieved at the expense of a 
considerable increase in flight time and, consequently, SOC. As can be concluded from Pareto frontiers, 
such a reduction in climate impact for this scenario is not cheap as only 5% more reduction in climate 
impact is obtained with almost 4% more increase in SOC (𝛼 = 0.0). As the aCCF of contrails is only 
evaluated in areas favorable for the formation of persistent contrails, typically determined using two 
inequality constraints, it has sharp spatial behaviors (i.e., PCFA (latitude, longitude, altitude, time) ∈ 
{0, 1}. In addition, contrails have dominant climate impacts. Therefore, the optimizer’s first choice is 
to avoid forming persistent contrails, which may be achieved more efficiently than reducing the 
impacts of other species with relatively lower climate impact and smooth spatial behavior. This can be 
validated in  as the lowest priority is given to reducing the climate impact associated with NOx emission 
(for 𝛼 = 0). 
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Figure 10. Flight level, fuel burn, true airspeed, and NOx emission for Case 1 (13th of June 2018, 0000UTC) for 
different routing options (i.e., α’s).  

 

 

Figure 11. ATRs associated with contrails, NOx emission, water vapor emission, and total non-CO2 climate 

effects (accumulated values along the route) for Case 1 (13th of June 2018, 0000UTC) for different routing 
options (i.e., α’s). The shaded regions show the ranges of uncertainty associated with uncertain 
meteorological conditions characterized using EPS (outer lighter areas show the minimum and maximum 
values while the inner darker ones represent 95% confidence interval.  
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Figure 12. Lateral paths for Case 1 (13th of June 2018, 0000UTC) depicted with (a): wind, (b) aCCF of contrails 
as colormaps. 
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Figure 13. Overall performance of the optimized trajectories in terms of ATR and SOC for Case 1 (13th of June 
2018, 0000UTC). (a) Contribution of each species to the total ATR, and costs of flight time and fuel 
consumption to net SOC (mean values), (b) ATR and SOC with ranges of uncertainty (min-max) for different 
routing options. (c) Pareto-frontiers considering absolute values (with uncertainty ranges) and relative values 
(only mean). 

 

3.1.2.2 Example 2 (No formation of persistent contrails) 

In the next scenario, we analyze the mitigation potential when no persistent contrails are formed with 
the cost optimal routing option. 

For  this case, aircraft profiles and climate responses are depicted in  and , respectively. As can be seen 
in , the optimizer chooses to fly at lower altitudes for routing strategies with higher penalization on 

(a)

(b)

(c)
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climate impact. As no contrails are formed (see a), the lateral paths are depicted with the merged aCCF 
(calculated using mean values of the obtained NOx  emission index) as colormap at different flight 
levels in b. As can be seen, flying at lower altitudes is more beneficial in reducing the climate impact 
of other species (mainly NOx). In addition to lowering cruise altitude, the aircraft flies at lower speeds 
to reduce the fuel flow, and consequently, fuel burnt, NOx  emission index, and NOx  emission. The 
variability of climate impact and SOC for different 𝛼’s and Pareto frontiers are given in . By reducing 𝛼, 
the climate impact decreases at the cost of an increase in SOC. For instance, for 𝛼 = 0.2, by accepting 
a 0.8% increase in cost, a 15% reduction in ATR can be achieved. As in the previous case, the relative 
increase in SOC is considerable for 𝛼 = 0, in which the aircraft tends to fly at a relatively lower speed 
for more reduction in climate impact. In conclusion, climate impact reduction is achieved at the 
expense of a higher cost increase than in the previous scenario. Moreover, since no contrails are 
formed, the uncertainty in climate impact is almost neglectable. 

 

 

 

Figure 14. Flight level, Fuel burnt, true airspeed, and NOx emission for Case 2 (10th of December 2018, 
1200UTC) for different routing options (i.e., α’s). 
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Figure 15. ATRs associated with contrails, NOx emission, water vapor emission, and total non-CO2 climate 
effects (accumulated values along the route) for Case 2 (10th of December 2018, 1200UTC) for different routing 
options (i.e., α’s). 
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Figure 16.  Lateral paths for Case 2 (10th of December 2018, 1200UTC) depicted with (a): aCCF of contrails, (b) 
merged aCCF. 
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Figure 17. Overall performance of the optimized trajectories in terms of ATR and SOC for Case 2 (10th of 
December 2018, 1200UTC). (a) Contribution of each species to the total ATR, and costs of flight time and fuel 
consumption to net SOC (mean values), (b) ATR and SOC with ranges of uncertainty (min-max) for different 
routing options. (c) Pareto-frontiers considering absolute values (with uncertainty ranges) and relative values 
(only mean). 

3.1.2.3 Example 3 (Formation of persistent contrails during daytime)  

A scenario with the formation of cooling contrails is considered for the last case. The aircraft profile 
and received climate impacts along the route are given in  and . It can be seen in  that by reducing the 
value of α, the cooling climate impact of contrails increases. To inverstigate this behavior, lateral paths 
with the aCCF of contrails as colormaps are depicted in . For the pure climate optimal routing option, 
the aircraft flies at FL300 and deviates from the shortest path to maximize the cooling impact of 
contrails. Unlike the case with warming contrails, the uncertainty in the climate impact associated with 
the climate optimal trajectories is considerable. This is due to the fact that to optimizer chooses to 
benefit from cooling contrails by flying through highly uncertain persistent contrail formation areas 
(instead of avoiding them).  

  

(a)

(b)

(c)
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Figure 18. Flight level, Fuel burnt, true airspeed, and NOx emission for Case 1 (10th of December 2018, 
1200UTC) for different routing options (i.e., α’s). 

 

Figure 19. ATRs associated with contrails, NOx emission, water vapor emission, and total non-CO2 climate 
effects (accumulated values along the route) for Case 3 (20th of December 2018, 1200UTC) for different routing 
options (i.e., α’s). 
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Figure 20. Lateral paths for Case 3 (20th of June 2018, 1200UTC) depicted aCCF of contrails as colormaps. 

 

The contribution of each species to the net climate effect and Pareto-frontiers are provided in . In 
addition to the increase of contrails’ cooling climate impact,  warming impacts of NOx emission and 
water vapor are also decreased (it can also be verified in ). However, when there is not any potential 
to increase the cooling impact of contrails and decrease the warming impact of NOx emission spatially 
through aCCFs, the optimizer tends to fly at a relatively lower speed to decrease NOx emission in order 
to reduce the climate impact of NOx emission (compare the cases α = 0.0 and α = 0.2 in , in which both 
fly almost at similar flight levels but different speed). As was shown and concluded in the previous two 
cases, reducing speed while flying at relatively lower altitudes is not a cheap option to mitigate the 
climate impact as it increases the flight time and, consequently, SOC. This is also true for this case study 
(see a). For instance, by looking at the Pareto-frontiers provided in c, we can conclude that a -350% 
reduction in climate impact can be obtained at the cost of a 3% increase in SOC (α = 0.2). However, 
25% more reduction is climate impact requires more than 4% additional cost (α = 0.0).  
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Figure 21. Overall performance of the optimized trajectories in terms of ATR and SOC for Case 3 (20th of 
December 2018, 1200UTC): (a) Contribution of each species to the total ATR, and costs of flight time and fuel 
consumption to net SOC (mean values), (b) ATR and SOC with ranges of uncertainty (min-max) for different 
routing options. (c) Pareto-frontiers considering absolute values (with uncertainty ranges) and relative values 
(only mean). 

Summary 

• For a  flight from Frankfort to Kyiv on three different days, the mitigation potentials were 
different due to the change in meteorological conditions. 

• The mitigation potentials for scenarios with contrails effects (warming or cooling) were higher 
due to dominant climate impact and non-smooth spatial behavior of contrails. In such cases, 
the optimizer’s first choice was to reduce the warming impact or increase the cooling impact 
of contrails. 

(a)

(b)

(c)
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• The climate effects of contrails were highly uncertain. The relatively high uncertainty in 
contrails' climate impact is related to the high variability among the ensemble members of 
relative humidity provided by the EPS required to determine the areas favorable for forming 
persistent contrails. 

• The generation of cooling contrails was associated with high uncertainty as the aircraft tends 
to fly within uncertain persistent contrail formation areas. However, the results were received 
almost deterministic for the scenarios with no contrails or the cases where aircraft trajectories 
avoid the formation of contrails.   

3.1.3 Mitigation potential 

This section includes general conclusions drawn from individual and representative case studies 
applied to the traffic scenario considered within WP2. Results, as well as uncertainties are presented 
in a consolidated manner for the top 100 routes and selected days. 

3.1.3.1 Daily and Seasonal impacts 

In this section, results will be presented to highlight the daily and seasonal variability and impact of 
atmospheric conditions on the optimized trajectories. The variability of the contrails climate impact 
quantified employing aCCF of contrails over the selected days in June and December is depicted in  on 
pressure levels 200, 250, 300, and 350hPa for 0000UTC and 1200UTC. Notice that the aCCF of contrails 
is considered as colormaps due to its dominant climate impact, playing an important role in 
determining aircraft trajectory in a climate-friendly manner. As can be seen, at midnight (i.e., 
0000UTC), the contrails climate impact is warming, while at midday, in addition to warming impacts, 
there are some areas with cooling climate effects. Besides, strong daily and seasonal variability can be 
concluded.  

The results of optimizing the top 100 routes for the considered scenarios is depicted in . Notice that 
results are presented per flight using weights associated with ASK of routes for averaging. For each 
day, three columns are given, respectively, showing the best climate impact mitigation potentials 
allowing +0% (cost-optimal), 1%, and 2.5% increases in the cost (quantified using SOC) corresponding 
to the cost optimal routing option. As can be seen, by adopting more increases in SOC, we can reduce 
more climate impacts. The mitigation potentials are strongly variable due to the change in atmospheric 
conditions. Such variability is higher for the contrails climate impact. Similar to the single route 
analysis, the focus of the optimizer for the aggregated results is on reducing the warming impact or 
increasing the cooling impact of contrails. By referring to  and looking at the obtained aggregated 
results, one can conclude that the mitigation potential is higher for those cases with more formation 
of persistent contrails at altitudes aircraft usually fly within the minimum cost routing strategy. For 
instance, more persistent contrails are formed on 05th, 10th, and 25th December 2018, 0000UTC for 
the area covering the top 100 routes than on the 15th and 20th of that month (see pressure levels 200 
and 250hPa). Thus, the mitigation potentials for those days are received higher (as was also concluded 
for single route analysis).   

In addition, during the daytime, it is possible to have cooling impacts of contrails for all days in 
December except for the 10th. This can be verified by referring to , in which no cooling impact is 
identified by aCCF of contrails during the daytime on the 10th of December for the area covering the 
top 100 routes. No potentiality to have the cooling impact of contrails in June can also be justified with 
. 
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Pareto-frontiers generated considering 0.0%, 0.01%, 0.05%, 0.1%, 0.5%, 1.0%, 1.5%, 2.0%, and 2.5% 
increases in cost are depicted in Figure 29 for absolute values with uncertainty ranges, mean of relative 
absolute values, and mean of the normalized relative values in percentage. It can be concluded that 
the climate impact mitigation potentials vary between 16% to 53%, with a maximum 2.5% increase in 
SOC of the pure cost optimal scenario. In addition, the ranges of uncertainty in net climate effects for 
the climate optimal trajectories resulting in the cooling climate impacts of contrails is relatively higher 
than the cases with only warming impacts in which the optimizer tends to avoid forming persistent 
contrails. For instance, let us compare the aggregated results, providing the best mitigation potentials 
in December at 0000UTC and 1200UTC, which are the 25th of December, 0000UTC, and 05th of 
December, 1200UTC. As can be seen, for nighttime flights, the range of uncertainty reduces because 
aircraft tend to avoid the formation of warming contrails. In contrast, for daytime flights, aircraft fly 
through uncertain PCFA regions to increase the cooling impact of contrails. 

 

Figure 22. Algorithmic climate change function of contrails for the selected days in December 2018 at 0000UTC 
for different pressure levels. 
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Figure 23. Algorithmic climate change function of contrails for the selected days in June 2018 at 0000UTC for 
different pressure levels. 
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Figure 24. Algorithmic climate change function of contrails for the selected days in December 2018 at 1200UTC 
for different pressure levels. 
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Figure 25. Algorithmic climate change function of contrails for the selected days in June 2018 at 1200UTC for 
different pressure levels. 
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Figure 26. Aggregated results of optimizing the top 100 routes: Contribution of each species to net ATR for the 
most climate optimal scenario accepting 0.0%, 1.0% and 2.5% increase in SOC. 

 

Figure 27. Aggregated results of optimizing the top 100 routes: Trade-off between reducing climate impact and 
relative increase in SOC considering absolute values. 
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Figure 28. Aggregated results of optimizing the top 100 routes: Trade-off between reducing climate impact and 
relative increase in SOC considering relative values.  

 

Figure 29. Aggregated results of optimizing the top 100 routes: Trade-off between reducing climate impact and 
relative increase in SOC considering normalized relative values in percentage. 
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Summary 

For the aggregated results, a similar behavior to the single route analysis can be concluded: 

• The received mitigation potentials were variable due to the change in atmospheric conditions. 

• For the considered case studies, in general, the nighttime flights resulted in more reduction of 
climate impacts (≈ 16-53%) compared to the daytime (≈ 23-34%).  

• The mitigation potentials were mainly achieved by reducing the warming impact or increasing 
the cooling impact of contrails. 

• Overall, allowing a maximum 2.5% increase in cost could reduce the climate impact by 16-53%  

• The uncertainties on those results generating cooling contrails were high due to the tendency 
to fly through uncertain persistent contrails formation areas. 

•  

3.2 Results based on the continuous optimal control approach  

The results estimated with TOM as described in section 1.1.1 on the basis of the previously introduced 
fictitious route network in section 2.1.3 are presented in the following in two sections. The overall 
mitigation potential is estimated using a three-step procedure: First, a deterministic pareto-front is 
generated for each route and each ensemble member of the weather forecast. Secondly, for each 
route, the pareto fronts of all ensemble members are combined in order to obtain probabilistic pareto 
fronts (see section 3.2.1). Finally, the results are aggregated for the top 10 routes of the ficiticious 
route network for the summer and the winter period (June and December) and for different times of 
the day (00:00 UTC and 12:00 UTC) as illustrated in section 3.2.3. 

3.2.1 Single Route analysis 

Within this section, step 1 and step 2 of the evaluation methodology are explained and exemplary 
results of optimised trajectories under consideration of uncertainties are presented and discussed. 
Section 3.2.1.1 highlights the estimation of a pareto front for one emseble member and section 3.2.2 
focuses on the determination of a probabilistic pareto-front based on the pareto fronts for each of the 
ensembles.  

3.2.1.1 Pareto front for one ensemble member 

Considering both, climate impact and economic aspects in the optimization of trajectories, 50 pareto-
optimal trajectories for each of the top 10 routes and each ensemble of the selected weather situations 
have been calculated by systematically varying the weighting factors cclim and cSOC according to 
Equations (4) and (5). Here, we optimize the most relevant route in terms of ASK from our fictitious 
network depicted in Figure 30 for the 13th and 18th  of June 2018 at 00:00 UTC. As illustrated in Figure 
30, the minimum cost trajectory (black, cSOC = 1) shows a shift eastwards when compared to the 
orthodrome (blue) in order to benefit from the reduced headwinds over the Bay of Biscay between 
Spain and France. Since we are considering night-time conditions, contrails have exclusively warming 
effects as opposed to day-time contrails as can be observed on the exclusively red contrail areas (red 
– warming effect, blue – cooling effect). The considered route is unaffected by contrails on June 13th 
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(see Figure 30 and Figure 32)  but goes through a strong contrail formation area on June 18th (see 
Figure 33 and Figure 35). 

Example 1: Spanish Riviera (CG) – London (FG), 2018-06-13 00:00 UTC (no contrail impact) 

 

Figure 30. Optimized trajectories for the fictitious route with highest ASK volume on the 13th of June 2018 
00:00 UTC departing from southern Spain and destined towards the greater London area.  

In Figure 30 the lateral path of the minimum SOC trajectory (black) and orthodrome (blue) are 
illustrated including the wind situation (left) and the total climate sensitivity (right) at an average 
altitude of 11.091 m. The lateral path of the minimum climate impact trajectory is not shown 
separately, since it only deviates slightly from the minimum cost trajectory. We can observe a field of 
head winds  across the middle section of the route, and no contrail-sensitive areas on cruise altitude. 
This lack of contrail-senstitive regions influences the pareto front as the next highest impact is caused 
by ozone. This can also be observed in Figure 31, where the shape of the pareto-front is clearly 
dominated by ozone and on a smaller scale water vapor. 

 

Figure 31. Pareto front for the 13th of June 2018 0000 UTC. 50 different parameter combinations were applied 
to generate the pareto front.  
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The parameter sweep performed to generate the pareto-front ranges from fuel optimal to climate 
optimal routes. A total relative climate impact mitigation potential of 33% can be achieved when 
comparing to a reference trajectory optimized for cost. This potential is dominated by the ozone aCCF, 
which allows for mitigation by deviating the trajectory to lower cruise altitudes. Due to the absence of 
contrail-forming regions the contrail aCCFs does not contribute any mitigation potential. 

From the 50 different parameter combinations optimized we present three characteristic points as 
depicted in Figure 31. Ranging from the cost optimal Point 1, we achieve a relative mitigation potential 
of about 19% for a relative increase in cost of 2,5%. Further decreasing the penalty of cost in the 
optimization leads to the maximum possible relative climate impact mitigation under the given 
boundary conditions of 33% at a relative increase of 22% in SOC (which considers both fuel and time). 

 

 

Figure 32. Altitude profiles of wind and contrail-aCCF for the 13th of June 2018. The lateral paths are shown for 
the minimum climate impact case (right, Point 3 of pareto-front), the minimum cost case (left, Point 1 of 
pareto-front) and an intermediate step (Point 2 of pareto-front) as a function of the relative flight time t/tf.  

The wind situation for the vertical trajectories is indicated as a ratio between ground speed vGS and 
true airspeed vTAS. Values greater than one indicate tailwind areas, values smaller than one indicate 
headwind areas. When considering the climate optimal case, we can observe a lower cruise altitude 
flown to minimize climate sensitive regions present in higher flight levels. This however causes the 
route to cross directly through a field of headwind, thus prolonging the flight time and increasing total 
fuel burn and hence costs. The cost optimal case ascends into a higher altitude at about t/tf = 0.4 and 
avoids a headwind area which is present at lower altitudes. 

Example 2: Spanish Riviera (CG) – London (FG), 2018-06-18 00:00 UTC (large contrail impact) 

The second investigated day for the trajectory CG-FG is the 18th of June. This day was selected due to 
the strongly different atmospheric conditions, and thus different optimized routes.  
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Figure 33. Optimized trajectories for the fictitious route with highest ASK volume on the 18th of June 2018 0000 
UTC.  

The lateral path of the minimum fuel trajectory (black) and orthodrome (blue) are illustrated including 
the wind situation (left) and the total climate sensitivity (right) at an average altitude of 10,819 m. The 
lateral path of the minimum climate impact trajectory is not shown separately, since it only deviates 
slightly from the minimum cost trajectory. Compared to the previous example route without any 
contrail sensitive regions, here a clear lateral and vertical deviation can be observed. The lateral 
deviation is mainly caused by taking advantage of tailwinds causing a westward shift at latitudes 
between 42°N and 51°N. Since the lateral expansion of contrails is generally higher than the vertical 
one, the optimizer avoids contrail-sensitive regions by changing the vertical profile of the trajectory. 
This smaller deviation consequently causes a lower cost increase when compared to a lateral 
avoidance. Furthermore, the prevailing headwinds also have an impact on the vertical profile, causing 
a dip from about 11,000m at t/tf = 0.2 and an ascend back to almost 12,000m to decrease flight time 
in regions with headwind.  

 

Figure 34. Pareto front for the 18th of June 2018 00:00 UTC. 50 different parameter combinations were applied 
to generate the pareto front.  
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The parameter sweep for the pareto front shown in Figure 34 ranges from cost optimal to climate 
optimal routes. The presence of contrails is the main contributor the shape and total mitigation 
potential observed in the pareto front. Since avoiding the contrail-sensitive region vertically has little 
economical consequences, a large reduction in relative ATR can be achieved at minimal cost increase 
as highlighted by Point 2 in Figure 34. A total relative climate impact mitigation potential of 82% can 
be achieved when comparing to a reference trajectory optimized for minimal costs (Point 3).  

 

 

 

Figure 35. Altitude profiles of wind and contrail-aCCF for the 18th of June 2018. The lateral paths are shown for 
the minimum climate impact case (right), and the minimum fuel case (left) as a function of the relative flight 
time t/tf.  

Again, here the wind situation for the vertical trajectories is indicated as a ratio between ground speed 
vGS and true airspeed vTAS. Values greater than one indicate tailwind areas, values smaller than one 
indicate headwind areas. When observing the climate optimal case (right), a dive starting at t/tf = 0.3 
is visible which is caused by both the field of headwind and the contrail-sensitive area ahead. The cost 
optimal case ascends into a higher altitude at about t/tf = 0.4 and minimizes flight time crossing areas 
of headwind. 

 

3.2.2 Probabilistic pareto front  

Taking into consideration the same route as previously presented, in this section we include results for 
the optimization of the trajectory for the set of ten ensembles to include the uncertainty related to 
weather variability. Individual pareto fronts are combined for all ensembles, e.g., see Figure 36 (b). 
Minimun and maximum values are determined for all 50 parameter combinations and the mean value 
is calculated Figure 36(c). Finally, the contributions of individual emission species are are estimated for 
the whole set of trajectories as seen in Figure 36 (d). 
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Example 1: Spanish Riviera (CG) – London (FG), 2018-06-13 0000 UTC (no contrail impact) 

The previously shown results for the single route example where computed on the basis of a single 
ensemble member of the EPS forecast. Here, we further analyze the influence of the whole set of ten 
ensembles to assess the impact of uncertainty in the weather prediction on the solutions generated 
with TOM. For this we have optimized the same route individually for each of the ensemble members, 
which renders ten different pareto-fronts. We determine maxima, minima and mean values for each 
parameter combination with shifting weights on climate and cost penalty. Finally, the mean impact of 
individual emission species is analyzed per route. 

 

Figure 36. Probabilistic Pareto-fronts for the most relevant fictitious route. Individual Pareto-fronts (a) are 
aggregated (b) to evaluate minima, maxima and mean values for each optimization step (c). Finally, 
contributions of individual emission species (d) are determined for the trajectory and ten weather scenarios 
of the 13th of June 2018. 

Individual Pareot-Fronts, see Figure 36(a) are aggregated (b) to evaluate minima, maxima and mean 
values for each optimization step (c). Finally, contributions of individual emission species (d) are 
determined for the trajectory and ten weather scenarios. The pareto fronts for each ensemble member 
serve as input for the aggregated results. From this set of ensembles, eight pareto-fronts show a similar 
correlation between relative changes of ATR and SOC,  while in two cases we can observe 10% higher 
relative mitigation potential for the same SOCs, see Figure 36 (a). As already depicted in Figure 31, for 
the first ensemble of the 13th of June, there are almost no contrail-sensitive regions affecting the route. 
The mitigation potential in this case is dominated by the sensitivity to NOx , specifically ozone, which 
can be addressed in order to reduce the relative climate impact up to 30% (see Figure 31.d ). Water 
vapor and a small impact by contrails add another 3% of mitigation potential. 

Example 2: Spanish Riviera (CG) – London (FG), 2018-06-18 0000 UTC (high contrail impact) 

 

Figure 37.  Probabilistic Pareto-fronts for the most relevant fictitious route. Individual Pareto-fronts (a) are 
aggregated (b) to evaluate minima, maxima and mean values for each optimization step (c). Finally, 
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contributions of individual emission species (d) are determined for the trajectory and ten weather scenarios 
of the 18th of June 2018. 

The procedure to generate the pareto-fronts depicted in Figure 37 is identical, however we can 
observe a change in results. In this case all pareto front show a strong gradient at low cost penalties, 
because in all ensembles contrail sensitive regions could be avoided at low cost penalties (see previous 
section). This is due to the vertical deviation from the cost optimal route which has a low impact on 
the overall costs. 

Sample shapes of the probabilistic pareto fronts 

 

Figure 38. Individually sampled probabilistic pareto fronts for representation of weather variability and effects 
on eco-efficient trajectories.  

To further understand the impact of the PES forecast ensembles on the mitigation potential we have 
analyzed individual routes to draw further conclusions. In Figure 38 samples of possible pareto-fronts 
are provided. There are three the main shapes identified when determining pareto-fronts for the set 
of ten ensembles: 

- All ten ensemble paretos are very close to each other within an error margin of less than 5%, 
indicating very similar weather situations and consequently mitigation options when optimizing 
the trajectory (Figure 38,left). 

- The ensemble paretos largely differ from each other – the maxima and minima in terms of relative 
ATR are far from the mean values. However, they are mostly equidistant to the mean, proving a 
forecast with lower precision but good accuracy (Figure 38,middle) 

- Again a large discrepancy between minima and maxima is observed, however the mean value ist 
shifted towards either the maxima, or minima – indicating that a reduced number of individual 
members of pareto ensembles differ from the rest (Figure 38, right) 

 

3.2.3 Mitigation potential 

In this section more general conclusion are drawn from the optimization under consideration of 
forecast ensemble data. Furthermore, we aggregate results for the ten most relevant routes of our 
fictitious route network as a subset of data representative for the traffic scenario selected. We analyze 
the impact of atmospheric conditions on the solutions of our optimizations. We quantify the impact of 
weather and aCCFs over the selected months of summer (June) and winter (December) as well as day 
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and night-time effects. The aggregated results are shown by Pareto fronts and weighted by ASK of the 
fictitious route network. 

 

Figure 39: Aggregated pareto fronts of the Top 10 Routes of the fictitious route network scenario for 
December, 00:00 UTC. Relative pareto front including uncertainties (left), absolute pareto front including 
uncertainties (middle), absolute pareto front with contribution of individual species (right). 

The ten most relevant routes from the fictitious route network account for an equivalent 100 real 
routes in terms of ASK. Similarly, to the procedure previously introduced in Example 1 of the single 
route analysis, we have calculated the mean values of the pareto front to generate aggregated results. 
In this instance absolute values are averaged values per trajectory. In general, we observe large 
mitigation potential across both seasons and times. By accepting increasing costs, we can achieve 
potentials of about 58% for day- and night-times in June. A strong gradient at low levels of relative SOC 
increase yield climate impact mitigation efficiencies of about 45% for a cost increase of 2%, see Figure 
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39. For the month of December, we observe higher total mitigation potentials of 61% and 70% for day-
time and night-time respectively. The following table gives a simplified overview of the mitigation 
potential associated to SOC increases of 2,5 and 10%. 

                                                             ∆ SOC 

∆ SOC June 00:00 UTC June 12:00 UTC December 00:00 UTC December 12:00 UTC 

10% 55% 53% 62% 70% 

5% 53% 48% 56% 65% 

2% 46% 41% 45% 46% 
Table 2: Total relative mitigation potential for summer and winter months at day- and night-time for given 
increases of relative SOC. 
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4 Summary and conclusion 

This report presents achievements on the overall computation of environmentally-optimised 
trajectories using the Robust optimisation of structured airspace (ROOST) and Trajectory Optimisation 
Module (TOM) based on the air traffic sample of intra-ECAC flights in 2018 and the computed fictitious 
route network. An overview of the general simulation setup - including the implementation of aCCF’s, 
meteorological data and traffic scenario – was given in D2.1 and is expanded in section 2 by more 
detailed information about constraints and boundaries applied to the optimisations for the integration 
of uncertainties.  

Following the general setup, necessary changes and adaptations of cost functionals as well as further 
tool-specific constraints are described for both optimisation approaches in Sections 2.2.1 and 2.3.1  
Moreover, this document presents exemplary results of individual routes to describe the applied 
methods and deliver an assessment on the robustness of environmentally-optimised trajectories. 
Overall mitigation potential is presented for the entire route network for each optimisation approach, 
followed by an intercomparison of the optimisation results again on the basis of single route examples. 

The final results for the aggregated scenario are the following for ROOST:  

• The mitigation potentials are highly variable due to changes in atmospheric conditions. 

• For the considered case studies, in general, the night-time flights resulted in a higher reduction 
of climate impacts (≈ 20-50%) compared to day-time (≈ 20-30%).  

• The mitigation potentials were mainly achieved by the reduction of the warming impact or 
increase of cooling impact of contrails. 

• Overall, allowing a maximum 3% increase in cost could reduce the climate impact by 20-50% . 

• The uncertainties on those results achieved by generating cooling contrails were high due to 
the tendency to fly through uncertain persistent contrail formation areas. 

The final results for the aggregated scenario of TOM can be summarized as follows: 

• The overall mitigation potential applying the continuous otpimization approach yields results 
in the order of 40-80%. 

• The highest relative mitigation potentials come at a high increase of costs (often above 10%). 

• For the investigated routes, as well as seasons and times, for a given increase of SOC we can 
observe mitigation potential variability across ensembles between 10 and 25% between best- 
and worst case scenarios. 

• Higher absolut mitigation potentials could be achieved in the winter month. 

• When contrails are present, the dominate the mitigation potential and generate strong  
gradients of mitigation potential at low cost increases.
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